- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hu, Hanbin (1)
-
Li, Peng (1)
-
Shim, Myung Seok (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Due to the growing complexity and numerous manufacturing variation in safety-critical analog and mixed-signal (AMS) circuit design, rare failure detection in the high-dimensional variational space is one of the major challenges in AMS verification. Efficient AMS failure detection is very demanding with limited samples on account of high simulation and manufacturing cost. In this work, we combine a reversible network and a gating architecture to identify essential features from datasets and reduce feature dimension for fast failure detection. While reversible residual networks (RevNets) have been actively studied for its restoration ability from output to input without the loss of information, the gating network facilitates the RevNet to aim at effective dimension reduction. We incorporate the proposed reversible gating architecture into Bayesian optimization (BO) framework to reduce the dimensionality of BO embedding important features clarified by gating fusion weights so that the failure points can be efficiently located. Furthermore, we propose a conditional density estimation of important and non-important features to extract high-dimensional original input features from the low-dimension important features, improving the efficiency of the proposed methods. The improvements of our proposed approach on rare failure detection is demonstrated in AMS data under the high-dimensional process variations.more » « less
An official website of the United States government

Full Text Available